Upgrade to TensorFlow 1.6, CUDA 9.0 and cuDNN v7.1.1
Since from the release of TensorFlow r1.6 it starts to support CUDA9.0, upgrade to CUDA from 8.0 to 9.0 is a must.
Firstly, download all the installation files from NVIDIA.
Install CUDA 9.0
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda
Use the autoremove to remove CUDA 8.0
sudo apt-get autoremove
Update
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update_1.0-1_amd64.deb
sudo apt-get update
sudo apt-get upgrade
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local-cublas-performance-update-2_1.0-1_amd64.deb
sudo apt-get update
sudo apt-get upgrade
Modify the .bashrc file
export PATH=/usr/local/cuda-9.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH
Then source it.
source ~/.bashrc
After sourcing the bashrc file, the CUDA version can be verified using
nvcc --version
Restart system for the graphic dirver R384 to take effect
Then check it:
nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.111 Driver Version: 384.111 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 970M Off | 00000000:01:00.0 Off | N/A |
| N/A 53C P0 26W / N/A | 564MiB / 6078MiB | 12% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1192 G /usr/lib/xorg/Xorg 263MiB |
| 0 2020 G compiz 133MiB |
| 0 3776 G ...-token=794ED49FD68C1309792D9D8F291D5B68 165MiB |
+-----------------------------------------Haven't you observed the same problem?
------------------------------------+
Next step is to install cuDNN. cuDNN can be downloaded from NVIDIA’s webpage:cuDNN page.
Extract cuDNN and install.
tar xvf cudnn-9.0-linux-x64-v7.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
Then install tensorflow r1.6 as the TensorFlow official website instructed in venv.
After installation, try the TensorFlow validation, it will work. However, When dealing with Keras predict model, it will raise such errors:
Downgrade to cuDNN v7.0.5
E tensorflow/stream_executor/cuda/cuda_dnn.cc:378] Loaded runtime CuDNN library: 7101 (compatibility version 7100) but source was compiled with 7004 (compatibility version 7000). If using a binary install, upgrade your CuDNN library to match. If building from sources, make sure the library loaded at runtime matches a compatible version specified during compile configuration.
Obveriously, it is a problem about cuDNN version compatibility. Solving this problem by downgrade the cuDNN to cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0.
tar xvf cudnn-9.0-linux-x64-v7.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64
sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h /usr/local/cuda-9.0/lib64/libcudnn*
Enjoy!